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The patterns of vortex formation from a cylinder oscillating in a horizontal plane,
located at various depths of submergence beneath a free surface, are characterized
using high-image-density particle image velocimetry (PIV). Instantaneous representa-
tions of the velocity field, streamline topology and vorticity patterns are referenced
to the instantaneous velocity of the cylinder. In turn, these features are related to the
magnitude and phase of the instantaneous transverse force, which can exhibit highly
nonlinear, spike-like fluctuations. When a finite gap is maintained between the free
surface and the cylinder, the patterns of vorticity concentrations are altered in such a
fashion that both the peak magnitude and the degree of amplitude modulation of the
negative transverse force spikes are attenuated, but shifted little in phase, relative to
the case of the fully submerged cylinder. On the other hand, when the cylinder is suf-
ficiently close to the free surface such that the gap region is eliminated, the patterns of
vorticity concentrations are fundamentally different and the negative transverse force
spikes are remarkably more pronounced and consistent than for deeper submergence.

1. Introduction
Oscillating flow past a stationary cylinder or, conversely, a cylinder oscillating in

quiescent fluid, is an effective means of simulating long wave–cylinder interaction.
The Keulegan–Carpenter number KC = 2πA/D, where A is the amplitude of the
motion and D is the cylinder diameter, is typically employed to describe the onset
and possible modes of vortex formation. The corresponding frequency parameter is
β = fD2/ν, in which f is the oscillation frequency and ν is kinematic viscosity.

An assessment of early investigations is given by Sarpkaya & Isaacson (1981) for
a wide range of KC . A number of interesting unstable and transitional phenomena
occur as KC and β are increased. These features are described by Honji (1981),
Sarpkaya (1986), and Tatsuno & Bearman (1990). Possible types of vortex patterns in
relation to defined values or ranges of KC are described by Singh (1979), Bearman et
al. (1981), Sarpkaya & Isaacson (1981), Ikeda & Yamamoto (1981), Iwagaki, Asano
& Nagai (1983), Williamson (1985), and Obasaju, Bearman & Graham (1988). When
KC > 4, a degree of asymmetry in the process of vortex formation leads to both a
transverse and an in-line force component. In fact, for values of KC larger than this
value, a wide variety of vortex patterns can be generated, and even at a given value
of KC , more than one type of pattern may be admissible. These patterns of vortices
are no doubt linked to the measured (transverse) vibrations of the corresponding
elastically mounted cylinder, as addressed by Sumer & Fredsøe (1986).
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Numerical modelling of unidirectionally oscillating cylinders in quiescent fluid or,
conversely, a stationary cylinder in oscillating flow, has been approached using a
variety of methods. Baba & Miyata (1987), Wang & Dalton (1991), Justesen (1991),
and Miyata & Lee (1990) employed finite-difference solutions of the Navier–Stokes
equations, Anagnostopoulos, Iliadis & Ganoulis (1995) used a finite-element approach
to the NS equations, and Sun & Dalton (1996) assess applied the method of large
eddy simulation (LES) for solution of the NS equations. Sarpkaya (1989) and Lin,
Bearman & Graham (1996) assess their own and previous approaches using discrete
vortex approaches, making use of Lagrangian or mixed Lagrangian–Eulerian schemes.

Early insight into this class of vortex–body interactions is provided by Sarpkaya
(1963, 1968, 1969), who derived the equations for the instantaneous transverse force
and drag on a circular cylinder in a time-dependent flow, accounting for an arbitrary
number of discrete vortices. Using a similar analysis, and tracking dye-visualized
vortices in the immediate vicinity of the cylinder, Maull & Milliner (1978) provide
substantial insight into the relationship between the formation and movement of the
vortices and the variation of the measured transverse and in-line forces. This sort of
approach was also employed by Ikeda & Yamamoto (1981), who approximated the
strength and motion of identifiable vortices from streak-marker visualization, in order
to make rough predictions of the variation of the transverse force with time. More
recently, Lin & Rockwell (1996) employed quantitative images for a selected portion
of the oscillation cycle. By treating the instantaneous concentrations of vorticity as
point vortices, they approximated the transverse force via the Maull–Milliner (1978)
approach. In addition, they calculated the transverse force using the actual distributed
concentrations of vorticity by means of a vorticity moment approach described by
Lighthill (1986); this technique was recently extended by Noca, Shiels & Jeon (1997)
to account for situations where vorticity concentrations are convected away from
the field of view. An alternative approach for determining the consequence of the
vortical motion on the transverse force involves a momentum-based concept that
avoids evaluation of vorticity; it involves a control volume surrounding the cylinder,
as discussed by Unal, Lin & Rockwell (1997) and Noca (1997).

Relatively little is known of the flow patterns about, and loading on, a unidirection-
ally oscillating cylinder in the presence of a free surface, with emphasis on sufficiently
high values of KC , such that pronounced vortex formation occurs, not only from
the cylinder, but possibly the free surface as well. The most closely related studies
are those of: Miyata, Shikazono & Kanai (1990), involving qualitative visualization
and numerical simulation of steady translation of the cylinder beneath a free surface;
Sheridan, Lin & Rockwell (1997) for free-surface flow past a stationary cylinder; Lin,
Sheridan & Rockwell (1996) for vertical perturbations of a semi-submerged cylinder
in the presence of mean flow; Miyata & Lee (1990), involving qualitative visualization
and numerical simulation of vortex motions induced by wave motion past a horizon-
tal cylinder; and Jarno-Dreuaux, Sakout & Lambert (1995) focusing on laser-Doppler
velocity measurements of the vortex pattern induced by wave motion past a circular
cylinder adjacent to a wall. Measurements of forces on a cylinder in proximity to a
wall are provided by Tsahalis (1984, 1985), Jacobsen et al. (1984), and Sumer, Fredsøe
& Jacobsen (1986).

In general, the quantitative structure of vortices from an oscillating cylinder in
quiescent fluid has remained unclarified for varying degrees of proximity to a free
surface. The degree of concentration of vorticity and the possible distortions of pat-
terns of vorticity concentrations as the cylinder moves through regions of previously
generated vorticity is essential for a complete understanding of the vortex formation
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Figure 1. Diagram of an oscillating cylinder beneath the free surface.

process. Such knowledge of the instantaneous vorticity field, in conjunction with the
instantaneous topology of the streamline patterns, can provide a quantitative basis for
describing the stages of growth of a vorticity layer adjacent to an oscillating cylinder
and its eventual detachment, or shedding, from the cylinder. The present study aims
to define these instantaneous, quantitative features of the vortex formation process
and link them to the instantaneous transverse force.

2. Experimental system and techniques
Experiments were undertaken in a free-surface water channel having a test-section

5500 mm long, 597 mm deep, and 597 mm wide, with the water level maintained at a
depth of 521 mm. For the present experiments, the water was maintained in a quiescent
state. A test-section insert housed the oscillating cylinder system, represented in figure
1. It had an internal length of 787 mm and a width of 495 mm. A 50.8 mm diameter
cylinder having a length of 483 mm was mounted at the mid-depth location. Circular
end plates were located at either end of the cylinder and immediately adjacent to
the interior of the wall of the test-section insert. These end plates had a diameter
of 483 mm and a thickness of 3.2 mm; they were bevelled at an angle of 30◦ at
their edges, in order to preclude localized flow separation. This cylinder–end plate
system was driven in the horizontal direction by an arm external to the test-section
insert. A computer-controlled, high-resolution motor allowed arbitrary frequency and
amplitude of the sinusoidal motion of the system.

The entire cylinder–endplate system was deployed at three values of submergence
beneath the free surface: h/R = 1.2, 1.9, and 10. The value of h/R = 10, corre-
sponding to the plane of symmetry of the test-section, is taken to represent the fully
submerged state. The general form of the patterns of vortices is in accord with those
of Williamson (1985) and Obasaju et al. (1988), who employed different experimental
arrangements. Moreover, comparison of the time histories of the in-line and transverse
force fluctuations of the latter investigation with those of the present study indicate
remarkable similarity of both form and amplitude. Values of h/R = 1.2 and 1.9 were
selected after extensive preliminary visualization. It indicated that, at these depths
of submergence, distinctly different modes of vortex formation could be observed,
relative to the classical mode at h/R = 10. The distinctive mode at h/R = 1.9 is rep-
resentative of that occurring for the case of a small gap between the cylinder and the
free surface. The mode at h/R = 1.2 represents zero gap, owing to a local depression
of the free surface above the cylinder during oscillation; it therefore corresponds to
zero flow between the cylinder and the free surface.

All experiments were performed at a value of Keulegan–Carpenter number KC =
2πA/D = 10. The frequency of the cylinder motion was f = 0.14 Hz, giving a dimen-
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sionless value of the frequency parameter β = fD2/ν = 378. The effective Reynolds
number was Re = KCβ = 3780. The value of KC = 10 generates generally re-
peatable patterns of asymmetrical vortices (Sarpkaya & Isaacson 1981; Williamson
1985; Obasaju et al. 1988), and thereby significant values of transverse force. More-
over, Obasaju et al. (1988) show that the spanwise correlation of the fluctuating
surface pressure is very high at KC = 10, indicating nearly two-dimensional vortex
formation. Extensive, preliminary experiments using hydrogen bubble and dye visu-
alization at all depths of submergence of the cylinder showed quasi-two-dimensional
vortex formation, with the exception of small-scale streamwise vorticity. In addition
to the foregoing parameters KC, β and Re, typically employed for a fully submerged
cylinder undergoing oscillatory motion, the Froude number Fr1 = U/(gD)1/2 or
Fr2 = U/(gh)1/2 must be specified; U is the maximum velocity of the cylinder, and D
and h are the cylinder diameter and the gap between the cylinder and the free surface,
respectively. For the present experiments, Fr1 = 0.103 and Fr2 = 0.046, 0.105, and
0.133, corresponding to the respective values of h/R = 10, 1.9, and 1.2. For all of these
values of Fr, the free surface was essentially undisturbed, except for a small-scale
surface depression above the cylinder at the smallest value of h/R = 1.2.

The instantaneous transverse force L was measured using a pressure integration
technique described by Szepessy & Bearman (1993); this led to the transverse force
coefficient (per unit length) CL = L/( 1

2
ρU2

0D). A total of eight pressure taps were
located about each half circumference of the cylinder. Each set of taps was connected
to a common reservoir, such that the average pressure over half the cylinder was
obtained with insignificant distortion and phase shift. Then, by subtracting the in-
tegrated pressure obtained on opposing sides of the cylinder, the net instantaneous
transverse force was obtained. A detailed set of design guidelines, including pressure
tap spacing, as well as a critical assessment of this technique, is provided by Szepessy
& Bearman (1993). The pressures on each half of the cylinder were sensed by two PCB
106B50 high-sensitivity pressure transducers, custom designed for immersion in water.
The outputs of these transducers were amplified, then filtered, at the inputs of the
A/D interface board of the laboratory microcomputer. Detailed tests with reference
signals and associated calculations showed that the amplitude and phase distortion,
induced by the sequential instrumentation from the output of the pressure transducer
to the memory of the microcomputer, was less than 0.5% of the original signal.

Determination of the instantaneous velocity fields, streamline patterns and dis-
tributions of vorticity was accomplished using a laser-scanning version of high-
image-density particle image velocimetry, described by Rockwell et al. (1993). A 20 W,
continuous-wave argon-ion laser was directed against a rotating mirror with 72 facets,
thereby generating a scanning laser beam, which formed a well-defined sheet. This
approach generated a laser scanning frequency of 361 c s−1. The scanning beam was
located a distance of 3.5D from the midplane of the cylinder. The plane of the pressure
taps was located a distance of 7

16
D from the laser plane, thereby providing sectional

values of transverse force, which were nearly coincident with the sectional develop-
ment of the vortex formation from the cylinder. This approach precludes difficulties
associated with force transducer measurements that include cylinder end effects.

The water was seeded with 12 µm diameter hollow glass spheres, which were coated
with a thin layer of silver. Particle images were recorded using a Nikon F-4 camera
with a 105 mm lens. High-resolution 35 mm film (300 lines mm−1) was employed as
a recording medium. The entire system, comprising the camera, bias mirror and
motion of the cylinder, was controlled by the same laboratory and microcomputer
that acquired the instantaneous pressure data.
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The lens system, corresponding to a magnification M = 1: 8.3, represents the ratio
of the lengthscale on the film negative to the lengthscale in the physical plane of
the laser sheet. The 35 mm negatives of the patterns of particle images were digitized
using a film scanner having a resolution of 125 pixels mm−1. With these digitized
images at hand, it is possible to obtain the velocity vectors. This was accomplished
using interrogation of a window size of 90 pixels× 90 pixels (0.72 mm× 0.72 mm)with
50% overlap. In order to satisfy the criterion of high image density, each interro-
gation window contained approximately 80 to 100 particle images. Evaluation of
this pattern of images yielded one velocity vector by use of a single-frame, cross-
correlation approach. The foregoing parameters corresponded to an effective grid size
of 0.36 mm× 0.36 mm on the film and, with the given value of magnification M, a
grid of 3 mm× 3 mm in the plane of the laser sheet. A critical assessment of the effect
of grid size m the patterns of velocity and vorticity of this class of flow is given by Lin
& Rockwell (1997). Larger grids than employed herein obscure the important features
of the small-scale patterns of vorticity in the immediate vicinity of the cylinder.

Simultaneous acquisition of PIV images and the transverse force involved syn-
chronization of the force acquisition with the trigger for the camera shutter. Data
acquisition commenced at completion of the fiftieth cycle of the cylinder oscillation.
This number of cycles allowed adequate development of the flow unsteadiness. In
all force traces exhibited herein, t = 0 corresponds to the extreme position of the
cylinder. At this instant, the camera was triggered and, after a mechanical delay, sent
out a signal to start acquisition of the force data (see figures 2 and 3).

3. Force signatures
The instantaneous transverse force coefficient CL = L/( 1

2
ρU2

0D) is shown in figure
2 as a function of dimensionless time t/T , in which T is the period of the cylinder os-
cillation. Three traces are given for different dimensionless depth h/R of submergence
beneath the free surface, in which h is measured from the free surface to the centre of
the cylinder and R is the cylinder radius. At h/R = 10, the cylinder is essentially fully
submerged beneath the free surface. Two cycles of modulated transverse force occur
for each cycle of the cylinder motion. This modulated pattern, the relative magnitudes
of the negative peaks of CL, and their phase relative to the instantaneous velocity
U of the cylinder, are in general agreement with CL by the traces of Obasaju et al.
(1988), for which the mode-averaged total force along the span was measured, in
contrast to the instantaneous, sectional force measurement of the present study. This
observation reaffirms the quasi-two-dimensional nature of the loading and thereby
the flow physics at KC = 10, already suggested by their high spanwise correlations of
fluctuating pressure noted in the foregoing. For decreased submergence, represented
by h/R = 1.9, both the degree of modulation and the magnitude of the negative peaks
of CL are decreased, relative to the aforementioned case. When the cylinder is located
very close to the free surface, however, represented by h/R = 1.2, particularly strong
negative ‘spikes’ of CL occur. They are of consistently large magnitude. Moreover, the
positive peaks of CL are also remarkably consistent, showing three successive peaks
for each half-cycle of the cylinder motion.

The CL variations corresponding to the first cycle of the cylinder motion of figure 2
are shown in expanded form in figure 3, in order to compare the relative magnitudes
of the negative peaks as a function of cylinder submergence and, more importantly,
to emphasize the phase shift of these peaks relative to one another at different values
of h/R. Though the amplitudes of the negative CL peaks are significantly attenuated
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Figure 2. Variation of transverse force coefficient CL as a function of time t normalized by the
period T of the cylinder oscillation for three different values of depth of submergence h normalized
by the cylinder radius R. – – –, variation of cylinder velocity U normalized by frequency f of
oscillation period and cylinder diameter D. Time t/T = 0 corresponds to completion of 50th cycle
of the cylinder oscillation.

at h/R = 1.9 relative to h/R = 10.0, they undergo relatively little shift in phase,
evident by comparing the vertical dashed lines passing through each trough of the CL
signature. An important, unclarified issue is whether certain features of the patterns
of vortex formation and development are maintained at h/R = 1.9, relative to those
at h/R = 10. In contrast, when the cylinder is located immediately beneath the free
surface, at h/R = 1.2, a dramatic phase shift of the negative spikes of CL occurs.
These spikes are consistently large and advanced in phase relative to cases of deeper
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Figure 3. Variation of transverse force coefficient CL over approximately one period of the cylinder
oscillation. Time t/T = 0 corresponds to completion of 50th cycle of the cylinder oscillation.

submergence, i.e. h/R = 1.9 and 10. This observation implies a fundamental change in
the corresponding pattern of vortex formation, as yet uninvestigated. In the following,
details of the vortex formation process and its consequence for the induced transverse
force are addressed.

4. Submerged cylinder: mechanisms of vortex formation and induced
transverse force

Patterns of vorticity and velocity are shown in figures 4(a) and 4(b) as a function
of dimensionless time t/T . The corresponding variation of velocity U of the cylinder
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(a)
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0.40
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Figure 4(a). For caption see facing page.

over the oscillation cycle is given in figure 3. For the first part of the oscillation
cycle, represented in figure 4(a), the cylinder moves to the left with increasing t/T .
Development of the layer of negative (dashed line) vorticity from the upper surface
of the cylinder, shown at instants t/T = 0.20, 0.31, and 0.40, involves small-scale
concentrations of vorticity akin to the small-scale vortices observed from a stationary
cylinder in steady flow at sufficiently high Reynolds number. They arise from the
Kelvin–Helmholtz instability of the separating layer and are known as Bloor–Gerrard
vortices, based on the investigations of Bloor (1964) and Gerrard (1978), and char-
acterized subsequently in the studies of Chyu & Rockwell (1996), and Prasad &
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(b)

t/T=0.60
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Figure 4. Patterns of positive (solid line) and negative (dashed line) vorticity in relation to
instantaneous patterns of velocity at key instants during the oscillation cycle. Minimum vorticity
level ωmin = ±3 s−1 and incremental vorticity level ∆ω = 3 s−1. h/R = 10.

Williamson (1997), and a range of other investigations cited therein. The agglomera-
tion of the small-scale vortices into a larger-scale vortex, evident in comparing images
at t/T = 0.31 and 0.40, has been addressed recently by Lin & Rockwell (1997), who
focused on the comparison of relative values of circulation of the multiple vorticity
concentrations and their relation to streamline topology in various reference frames.
The circulation Γ ∗ = Γ/πUmD, in which Um is the maximum velocity of the cylin-
der, is −0.83 for the agglomerated, large-scale concentration of negative vorticity at
t/T = 0.40. The net value of circulation for all remaining small-scale concentrations
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is Γ ∗ = −0.64. In contrast to the development of this negative layer of vorticity, the
positive layer along the surface of the cylinder, first evident at t/T = 0.31, does not
develop in the same manner as its negative counterpart. Rather, at successive instants
t/T = 0.40 and 0.49, it exhibits a pronounced concentration of vorticity, which tends
to move around the surface of the cylinder, rather than departing from the surface.

The corresponding velocity fields shown in the right-hand column of figure 4(a)
generally exhibit large-scale swirl patterns of velocity vectors in accord with the
major concentrations of vorticity. Other regions of vorticity, however, including that
associated with development of a positive vortex along the surface of the cylinder,
are not indicated by the velocity patterns. A general feature of the velocity fields of
figure 4(a) is development of a large-scale, jet-like region between the cylinder and
the major swirl pattern. It is oriented in the upward direction and is induced by the
major concentration of negative vorticity, evident in the images at t/T = 0.31 to
0.49. The width of this jet-like region increases with t/T , corresponding to increased
displacement between the major concentration of vorticity and the centre of the
cylinder.

The subsequent half of the oscillation cycle, corresponding to rightward movement
of the cylinder and positive values of velocity U (cf. figure 3) is represented by the
images in figure 4(b). At t/T = 0.60, the positive region of vorticity along the surface
of the cylinder is now oriented vertically above the cylinder and, at subsequent instants
of time, unfurls to the left, while the continuously shed vorticity becomes increasingly
concentrated into well-defined vortical structures. At times t/T = 0.71 and 0.80, the
development of this positive vorticity layer is conceptually similar to the negative
layer during the first half of the oscillation cycle shown in figure 4(a). Simultaneously,
a layer of vorticity of opposite (negative) sense concentrates along the lower surface
of the cylinder at t/T = 0.80; it is the counterpart of the positive concentration
formed along the surface shown during the first half of the cycle at t/T = 0.31. A
distinguishing feature of the patterns of vorticity formed over the second half of the
oscillation cycle is the presence of the large-scale, negative concentration of vorticity,
evident in the right-hand half of the image at t/T = 0.60, which was formed during
the earlier part of the cycle. It eventually forms a counter-rotating vortex pair with
the large-scale positive concentration of vorticity, as demonstrated at t/T = 0.80.

The primary features of the patterns of velocity vectors shown in figures 4(a) and
4(b) are in general accord with patterns deduced from qualitative dye and particle
streak visualization, reviewed by Sarpkaya & Isaacson (1981), Bearman et al. (1981),
Williamson (1985) and Obasaju et al. (1988). The movement of a previously shed
vortex past the cylinder and subsequent formation of a vortex pair are evident
in these studies. More specifically, the patterns of particle streak visualization of
Williamson (1985) provide the equivalent of instantaneous velocity and streamline
patterns in the laboratory frame. The velocity field image at t/T = 0.80 in figure 4(b)
is remarkably similar to the particle streak pattern of Williamson (1985, figure 7a).

From evolution of the flow patterns shown in figures 4(a) and 4(b), it is evident
that the onset and development of vortex formation from the oscillating cylinder
involves a particularly complex series of events, relative to its simpler counterpart of
vortex formation from a stationary cylinder in a steady stream. In order to define the
mechanisms of vortex formation, it is necessary to compare directly the instantaneous
distributions of vorticity and velocity and the streamline topology in the immediate
vicinity of the cylinder. After examination of a total of thirty-six sequential images,
it was found that the principal features of the vortex development from the cylinder
could be described on the basis of five sets of images, selected at crucial instants,
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FIG. 5

Figure 5. (a) Pattern of instantaneous velocity in the laboratory reference frame in relation to a reference contour of positive vorticity (solid white
line); (b) corresponding pattern of streamline topology in the laboratory frame; (c) positive vorticity contours; and (d) streamline pattern in the
cylinder reference frame. Images correspond to the instant t/T = 0.31 during the oscillation cycle of the cylinder. h/R = 10.

Figure 6. Same as figure 5, except images correspond to the instant t/T = 0.49 during the oscillation cycle of the cylinder.
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corresponding to figures 5 to 9. These images focus on the development of the
positive vorticity adjacent to the surface of the cylinder and its eventual shedding into
the cylinder wake. As a consequence, corresponding negative contours of vorticity,
exhibited in the overviews of figures 4(a) and 4(b), are not shown. The five distinct
phases of vortex formation initiate with the growth of an attached vorticity layer
along the cylinder and conclude with the onset of a classical, separated vorticity layer
involving formation of a vortex pattern in the near-wake.

4.1. Growth of attached vorticity layer

Figure 5 represents the layer of vorticity along the surface of the cylinder in terms
of: (a) the instantaneous velocity field in the laboratory frame superposed on the
lowest level vorticity contour; (b) the streamline pattern in the laboratory frame; (c) a
complete representation of contours of constant positive vorticity; and (d) streamlines
in the cylinder reference frame. The angle θ, defined in the inset of figure 5(a), is
used to aid definition of predominant features of the flow in this and subsequent sets
of images. The velocity field and the streamline topology in the laboratory reference
frame, illustrated in figures 5(a) and 5(b), show existence of a saddle point (intersecting
streamlines) at θ = 315◦ displaced well away from the surface of the cylinder. At
the surface of the cylinder, and at approximately the same value of θ, separaticies
of a number of streamlines are evident. These streamlines form a bubble along the
surface of the cylinder from θ = 250◦ to 325◦. The lower left-hand boundary of the
vorticity contour of figure 5(a) lies within this bubble-like region. These observations
suggest that the corresponding pressure gradient along the surface of the cylinder
in this region is large and serves as a source of vorticity flux. The concentration of
vorticity at θ = 180◦, illustrated in figure 5(c), is apparently the culmination of the
vorticity flux through the surface at earlier times. The streamline pattern in a reference
frame with respect to the cylinder, shown in figure 5(d), suggests half-saddle points at
θ = 105◦ and 340◦. This streamline pattern resembles that of a steady uniform flow at
angle-of-attack past a cylinder with bound circulation. It is evident that the extreme
reference frames for observing the streamlines, corresponding to figures 5(b) and 5(d),
provide no indication of the vorticity concentration along the surface of the cylinder.

4.2. Migration of vorticity pattern about circumference of cylinder

At a later instant, corresponding to t/T = 0.49, shown in figure 6, the instantaneous
velocity U of the cylinder is nearly zero (cf. figure 3). The pattern of vorticity originally
defined in figure 5 has moved circumferentially in the counterclockwise direction about
the cylinder. In addition, the extremum of vorticity now has a significantly larger value,
indicating further agglomeration into a pronounced vorticity concentration, which is
centred at θ = 124◦. The velocity field of figure 6(a) and the corresponding streamline
pattern of figure 6(b), both in the laboratory frame, show no indication of significant
flow separation from the surface of the cylinder. In the cylinder frame, however, the
streamline pattern exhibits a thin separation bubble centred at θ = 145◦.

Figure 7. Same as figure 5, except images correspond to the instant t/T = 0.60 during the oscillation
cycle of the cylinder.

Figure 8. Same as figure 5, except images correspond to the instant t/T = 0.69 during the oscillation
cycle of the cylinder.
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FIG. 7

Figures 7 and 8. For captions see facing page.
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4.3. Development of large-scale separation bubble

Further evolution of the vorticity pattern involves separation from, then reattachment
to, the upper surface of the cylinder as indicated in figure 7. The velocity vectors
within the vorticity contour of figure 7(a) show upward-oriented vectors on the
right-hand side, and lower-oriented vectors on the left-hand side, with very low-
magnitude vectors between them. The vectors in the vicinity of the cylinder over
the range of θ = 20◦ to 120◦ indicate multiple separation and reattachment points,
which are further evident in the corresponding streamline pattern of figure 7(b).
The nested streamlines therein indicate a bubble-like region. A well-defined vorticity
concentration is indicated in figure 7(c). It is now located well away from the surface
of the cylinder; this extremum corresponds to the large velocity gradient occurring
between the counter-flowing upward and downward regions of velocity indicated in
figure 7(a). In the cylinder reference frame of figure 7(d), half-saddle points occur at
θ = 6◦ and 220◦. Again, the streamline topologies of figure 7(b) and 7(d) provide no
clear indication of the region of large-scale vorticity.

4.4. Onset of terminal state of separation bubble

Continued development of the aforementioned pattern of vorticity involves two basic
effects: (i) Unfurling of the pattern of vorticity to the left, as shown in figure 8(a),
corresponding to movement of the entire pattern in the counterclockwise direction;
and (ii) continued flux of vorticity from the surface of the cylinder. Both of these effects
give rise to an elongated layer of vorticity. The velocity pattern exhibits a well-defined
swirl within the lowest level vorticity contour of figure 8(a). The streamline topology in
the laboratory reference frame of figure 8(b) indicates a pattern of nested streamlines
within a limit cycle, in turn within the large-scale separation bubble, which has now
moved substantially in the counterclockwise direction from its original position in
figure 7(b). The extreme separation and reattachment points of this large-scale bubble
are bounded by the range from θ = 30◦ to 80◦. The focus (centre) of the nested
streamline pattern in figure 8(b) corresponds to the extremum of vorticity indicated
in figure 8(c). The streamline topology in the cylinder frame of figure 8(d) shows no
indication of the existence of the vorticity concentration indicated in figures 8(b) and
8(c).

4.5. Collapse of large-scale bubble and onset of classical separated vorticity layer

At the instant corresponding to figure 9, the large-scale bubble indicated in the
foregoing images of figures 7 and 8 is not evident. The swirl patterns of the velocity
field and the superposed vorticity contour of figure 9(a) suggest a separated shear layer
of the classical form, involving a sequence of vorticity concentrations. The separation
point from the cylinder is sharply defined. It occurs at approximately θ = 75◦, at
the confluence of the clockwise velocity field about the cylinder for θ∼< 75◦ and the
counterclockwise-oriented velocity field for θ∼> 75◦. The topology in the laboratory
reference frame of figure 9(b) clearly indicates this separation (half-saddle) point. Only
the larger-scale vorticity concentration of the actual vorticity field of 9(c), however, is
represented by this topology. Finally, the streamline topology of figure 9(d) suggests a
half-saddle at approximately the separation point θ ∼= 58◦, but only a mild indication
of the actual vorticity concentrations present in the flow.

4.6. Relation of patterns of vorticity to transverse force

Selected distributions of instantaneous vorticity are shown in figure 10 in relation
to the time history of the transverse force coefficient CL. In this and subsequent
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h

Figure 9. Same as figure 5, except images correspond to the instant t/T = 0.78 during
the oscillating cycle of the cylinder.

sections, emphasis is on the rapidly evolving vorticity concentrations in the vicinity of
the cylinder, which are central to determining the instantaneous transverse force. It
should be emphasized, however, that all previously shed vorticity must be accounted
for in exact calculations of the transverse force. During preliminary diagnostics,
which considered regions beyond the field of view employed herein, the circulation
of the vorticity concentrations was observed to rapidly decrease, suggesting that
the near-wake vorticity exerts a substantial influence on the transverse force. For
the first half of the cycle for which the cylinder has a negative velocity U, the
magnitude of CL decreases dramatically from t/T = 0.20 to 0.31. Correspondingly,
the pattern of negative vorticity moves up and away from the cylinder and abrupt
onset of a positive layer of vorticity occurs near its base. For the second half of the
cycle, the abrupt drop in CL, from its maximum-positive value at t/T = 0.60 to its
maximum-negative value at 0.80, again corresponds to the development of vorticity
concentrations in the separated layer, which rapidly moves away from the cylinder.
In addition, the large-scale concentration of negative vorticity assumes successive
positions such that it eventually forms a counter-rotating vortex system with the
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Figure 10. Comparison of instantaneous vorticity contours in relation to the variation of the
instantaneous transverse force coefficient CL as a function of dimensionless time t/T . Minimum
vorticity level ωmin = ±3 s−1 and incremental vorticity level ∆ω = 3 s−1. h/R = 10.

positive vorticity concentrations. In accord with the reasoning of Maull & Milliner
(1978), by using point vortices, in conjunction with the Blasius theorem, movement
of the vorticity concentrations formed in the separating shear layer, in a direction
up and away from the centre of the cylinder, induces negative transverse force and
contributes to the negative spikes of CL at t/T = 0.3 and 0.8.

Close to the occurrence of maximum-negative CL, in the vicinity of t/T = 0.8,
the concentrations of vorticity are displaced substantially from one instant to the
next as indicated in the time sequence of figure 11. The left-hand column shows
closely spaced images corresponding to t/T = 0.77, 0.80, and 0.83. This outward
movement of vorticity, which contributes to the magnitude of the negative transverse
force spike, involves agglomeration of the individual (positive) concentrations of
vorticity into a single, larger-scale concentration. During this process, the negative
vorticity concentration remains intact. Simultaneously, the negative vorticity layer
separating from the bottom surface of the cylinder takes on a pronounced form with
larger peak levels of vorticity with increasing time. Alternatively, the contribution
of the discrete vorticity concentrations to the negative spike of the transverse force,
indicated in figure 10, can be assessed by calculating changes with time of moments of
vorticity, as undertaken by Lin & Rockwell (1996). If the spatial patterns of vorticity
exhibit rapid changes with time, the corresponding vorticity moments will change
accordingly. As an indication of the variation of the spatial patterns of vorticity,
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Figure 11. Sequence of images closely spaced in time (left-hand column) showing instantaneous
contours of positive (solid line) and negative (dashed line) vorticity, approximately corresponding
to the occurrence of the negative spike of transverse force. Contours of constant difference vorticity
ωdiff (right-hand column) are obtained by subtracting vorticity levels in two successive images.
Minimum vorticity level ωmin = ±3 s−1 (left- and right-hand columns) and incremental vorticity
level ∆ω = 3 s−1 (left-hand column) and 2 s−1 (right-hand column).

differences in vorticity were calculated. In the right-hand column of figure 11, the
contours of constant difference vorticity ∆ω are illustrated, in order to emphasize the
relative displacement of the concentrations of vorticity. These contours are obtained
by subtracting the vorticity fields of two successive frames. The image at the upper
right-hand side corresponds to the difference between frames at t/T = 0.80 and 0.77,
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t/T=0.64

0.72

0.78

Figure 12(a). For caption see facing page.

while the bottom right-hand image corresponds to the difference between t/T = 0.83
and 0.80. The result is, in general, two rows of alternating concentrations of ∆ω that
have the highly ordered form depicted in the upper right-hand image. The ordered
nature of this pattern is distorted in the image at the lower right-hand side, owing to
the agglomeration of the positive concentrations of vorticity mentioned previously.

5. Cylinder in proximity of free surface: vortex patterns and induced
transverse force

On the basis of the force traces shown in figure 3, it is evident that proximity of the
free surface may alter both the magnitude and phase of transverse force coefficient
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Figure 12. (a) Patterns of instantaneous positive (solid line) and negative (dashed line) vorticity
and instantaneous velocity at the instants t/T = 0.64, 0.72 and 0.78 during the oscillation cycle.
Minimum vorticity level ωmin = ±3 s−1 and incremental vorticity level ∆ω = 3 s−1. Depth of
submergence h/R = 1.9. (b) At the instant t/T = 0.92 during the oscillation cycle. Also shown is
the relationship between the instantaneous transverse force signature and representative patterns of
vorticity.

CL, relative to its counterpart for the fully submerged cylinder. In the following, we
aim to clarify the underlying physics. For the case where a significant gap exists
between the free surface and the upper surface of the cylinder, i.e. h/R = 1.9, the
transverse force variation of figure 3 shows a substantial reduction in amplitude,
but little change in phase of the maximum-negative peaks of CL relative to the
fully submerged counterpart at h/R = 10. The velocity and vorticity patterns in the
vicinity of the negative peak at t/T = 0.78 are given in the bottom row of images
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of figure 12(a). In this layout, the arrow at the upper left-hand side of the layout
of images defines the location of the free surface. The presence of the free surface
generally inhibits large-scale transverse motion of the cylinder wake, evident in the
velocity fields of the first two images corresponding to t/T = 0.64 and 0.72. At later
instants, represented by the bottom image of figure 12(a) and the top image of figure
12(b), taken at t/T = 0.78 and 0.92, large-scale swirl patterns suggest presence of
corresponding patterns of vorticity in the wake of the cylinder. These velocity patterns
are distinctly different from those of the completely submerged cylinder at the same
phase of the cylinder motion, i.e. compare instants t/T = 0.60, 0.71, and 0.80 in figure
4(b).

The corresponding concentrations of vorticity, shown in the right-hand columns of
figures 12(a) and 12(b) indicate the following sequence. A previously shed positive
(grey) concentration of vorticity is swept beneath the surface of the cylinder in the first
image (t/T = 0.64), and continues its general direction of movement relative to the
cylinder in the second image (t/T = 0.72); at this instant, however, both positive and
negative concentrations of vorticity have been shed from the upper and lower surfaces
of the cylinder and, together with the previously shed (positive) concentration beneath
them, form a triplet of vertically stacked, alternating concentrations of vorticity. At a
later time, shown in the third image (t/T = 0.78), each of these concentrations moves
further from the cylinder, and an additional, positive concentration is shed from the
upper surface. Finally, in the last image, shown at the top of figure 12(b) (t/T = 0.92),
the process of shedding of the positive and negative concentrations from the upper
and lower surfaces of the cylinder further progresses.

These concentrations of vorticity are shown on the trace of CL in figure 12(b).
The occurrence of the maximum-negative CL at t/T = 0.78 has general features in
common with its fully submerged counterparts at t/T = 0.31 and 0.80 in figure 12(b).
In both cases, concentrations of vorticity are shed from the top surface of the cylinder,
and their movement up/away from the surface of the cylinder contributes to the peak
negative CL. The physics of vortex formation and development from the cylinder
adjacent to a free surface is, however, distinguished from that of a fully submerged
cylinder in the following respects: (i) a positive concentration of previously shed
vorticity is swept beneath the cylinder (t/T = 0.72 in figure 12a) rather than above
the cylinder (t/T = 0.80 in figure 4(b)); (ii) the positive layer of vorticity remains
at approximately the same vertical elevation as the upper surface of the cylinder
(t/T = 0.78 in figure 12a) rather than moving upward from the cylinder (t/T = 0.80)
in figure 4(b); and (iii) formation of the negative concentration of vorticity is more
advanced (t/T = 0.78) in figure 12(a), relative to the initially developed concentration
of negative vorticity (t/T = 0.80) in figure 4(b).

6. Cylinder adjacent to free surface: vortex patterns and induced
transverse force

For the case where the cylinder is immediately beneath the free surface, h/R = 1.2,
the trace of CL given in figure 3 shows, in comparison with the cases of the more deeply
submerged cylinder, a radical shift in timing, i.e. phase, of the negative transverse
force spike relative to the cylinder motion. Moreover, these negative spikes of CL are
consistent and pronounced, relative to the aforementioned cases. The corresponding
velocity and vorticity patterns are given in figures 13(a) and 13(b). All images show a
significant depression of the free surface immediately above the surface of the cylinder.
This depression precludes a jet-like flow through the gap between the cylinder and
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the free surface, as was observed in figure 12(a). Consider first the images of velocity
vectors shown in the left-hand column. In the uppermost image, corresponding to
t/T = 0.34, a large-scale swirl pattern suggests a corresponding concentration of
vorticity at that location. In subsequent images at t/T = 0.49 and 0.60, a pronounced
jet flow is induced along the lower surface of the cylinder and, at t/T = 0.71, a
large, clockwise swirl of velocity vectors suggests a vortex immediately behind the
cylinder; beneath this swirl, a milder swirl of opposite sense suggests the existence of
a positively oriented vortex. These patterns of velocity have no apparent resemblance
to their counterparts in figure 12(a) e.g. compare patterns at the instant corresponding
to maximum-negative transverse force: t/T = 0.78 in figure 12(a) and t/T = 0.60
in figure 13(a). It is therefore evident that the presence of the gap has a dominant
influence on the entire flow pattern about the cylinder.

Corresponding concentrations of vorticity are given in the right-hand columns of
figures 13(a) and 13(b). At t/T = 0.34, the vorticity field is dominated by a positive
layer of vorticity shed from the bottom layer of the cylinder, which eventually agglom-
erates to form a relatively large-scale vortical structure at t/T = 0.49. At t/T = 0.60,
this cluster of vorticity, which has a value of circulation Γ ∗ = Γ/πUmD = 0.92, moves
beneath the cylinder, and at t/T = 0.71 coexists with a large-scale negative cluster
formed from the lower surface of the cylinder. Vorticity shed from the upper surface
of the cylinder has a relatively small spatial extent. Finally, at t/T = 0.83, the large-
scale cluster of positive vorticity has rapidly moved to the left-hand side out of the
field of view, and the negative layer of vorticity continues to shed into the near-wake.
This pattern has a form that is nearly the mirror image of the pattern at t/T = 0.34.

The instantaneous concentrations of vorticity are shown in conjunction with the
time history of CL in figure 13(b). The peak positive values of CL at t/T = 0.34
and 0.83 are in accord with the movement of the large-scale clusters of positive
(t/T = 0.34) and negative (t/T = 0.83) vorticity away from the surface of the cylinder.
On the other hand, the peak negative spike of CL at t/T = 0.6 is associated with
movement of a large-scale cluster of vorticity beneath the surface of the cylinder. Both
of these trends are deducible from the point vortex simulation of Maull & Milliner
(1978). We again emphasize that all previously shed vorticity must be accounted for
when exactly determining the forces on the cylinder.

In summary, for this case of the cylinder immediately adjacent to the free surface,
we have the observation that even though large-scale concentrations of vorticity are
shed from only the bottom of the cylinder, the consistency (compare h/R = 10 in
figure 3) and magnitude (compare h/R = 1.9 in figure 3) of the induced transverse
force surpass those corresponding to a cylinder at deeper submergence.

7. Concluding remarks
The degree of submergence of the cylinder has a dramatic effect on the type of vortex

formation in the near-wake of a cylinder oscillating in quiescent fluid. The principal
features of vortex formation have been defined using quantitative representations of
the instantaneous flow patterns, i.e. velocity distributions, streamline topology in the
laboratory and cylinder reference frames, and vorticity distributions.

For the case of the fully submerged cylinder, the process of vortex formation
involves a sequence of complex events, relative to simpler case of Kármán vortex
formation in a steady flow. Development and migration of a distributed vorticity
layer about the circumference of the cylinder, which may exhibit a localized con-
centration of vorticity, eventually gives way to shedding of a layer of small-scale
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Figure 13(a). For caption see facing page.

vorticity concentrations, some of which agglomerate to form a large-scale vortex.
The corresponding streamline topology allows definition of saddle points, half-saddle
points, separatixes and reattachment points during the vortex formation process.
Most importantly, vortex development involves formation of a large-scale separation
bubble on the surface of the cylinder that eventually collapses at the initiation of
classical vortex shedding from the surface of the cylinder. The transverse force sig-
nature exhibits highly ordered modulations, which can be related to defined patterns
of instantaneous vorticity concentrations. The dominant negative spike of transverse
force occurs in conjunction with formation of a counter-rotating vortex pair involving
a vorticity concentration shed from the previous cycle.

When the cylinder is adjacent to the free-surface, such that a gap exists between
them, the verticle movement of the vorticity layer shed from the cylinder is inhibited.
Furthermore, the negative concentration of vorticity formed from the previous cycle
is not swept above the cylinder, as in the fully submerged case; rather, the positive
concentration shed during the previous cycle is swept beneath the cylinder and forms
a vertically stacked system of three vortices in the near-wake. Correspondingly, the
amplitude of the negative spikes of CL is attenuated. The phase of these negative
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Figure 13. (a) Patterns of instantaneous positive (solid line) and negative (dashed line) vorticity and
instantaneous velocity at the instants t/T = 0.34, 0.49, 0.60 during the oscillation cycle. Minimum
vorticity level ωmin = ±3 s−1 and incremental vorticity level ∆ω = 3 s−1. Depth of submergence
h/R = 1.2. (b) At the instants t/T = 0.71 and 0.83 during the oscillation cycle. Also shown is
the relationship between the instantaneous transverse force signature and representative patterns of
vorticity.
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spikes relative to the cylinder velocity is, however, altered only slightly compared to
the fully-submerged cylinder.

For the extreme case where the cylinder is located immediately beneath the free
surface, such that no gap region exists, significant vorticity concentrations are formed
only from the bottom surface of the cylinder. Remarkably, the negative spikes of
transverse force are generally of larger magnitude and more consistent than those for
which the cylinder is more deeply submerged. In fact, the vortex–cylinder interaction
associated with the negative spikes is fundamentally different. It is dominated by
sweeping of a large-scale, positive concentration of vorticity beneath the surface
of the cylinder. This positive concentration is formed from the cylinder during a
previous cycle; despite the proximity of the cylinder, no pronounced concentrations
from the free surface were observed. As a consequence, the transverse force spikes are
dramatically shifted in phase, i.e. occur at a different value of the cylinder velocity,
relative to the cases of deeper submergence.

Taking an overview of the vortex patterns in the present investigation, it is evident
that they are considerably more complex than for Kármán vortex formation from a
stationary cylinder in steady flow. This point is abundantly clear from the qualitative
flow-visualization studies of a fully submerged cylinder summarized in § 1. For the
present case of the fully submerged cylinder, it is evident that the formation of
vorticity concentrations in the separated layer is analogous to that in the layer
leading to Kármán vortex formation. It occurs, however, only from one (i.e. top) side
of the cylinder. Despite the effects of proximity of the free surface on altering the
magnitude and phase of the vortex formation process, the alternating formation of
positive and negative layers of vorticity from only one side of the cylinder appears to
persist for varying degrees of submergence and, in the limiting case of the cylinder
immediately adjacent to the free surface, it switches from the top to the bottom
surface of the cylinder. Of course, other types of vortex formation simultaneously
occur, and the timing of the entire previously shed vortex system is influenced by
the proximity of the free surface, in turn altering the magnitude and phase of the
transverse force.

Unlike the case of Kármán vortex formation from an oscillating cylinder in a
steady stream, it is well known that vortex formation from an oscillating cylinder
in a quiescent fluid exhibits more than one admissible mode, at least for the fully
submerged cylinder. In fact, Obsaju et al. (1988) address this variability of modes for
a given set of oscillation parameters. At, for example, KC = 10, the general pattern
of vortex formation was the same, but could occur at four different angles θ, where
θ is the angle measured between the instantaneous, positive flow direction and the
path of the vortex pair. In essence, our experiments exhibited a similar variability
of occurrence of these four possible modes. A given mode was observed to remain
locked-on for a number of cycles before transforming to a different mode. When the
cylinder is moved closer to the free surface, the mode of vortex formation does not
appear to be an extension of the possible modes that can occur for the essentially,
fully submerged cylinder. Rather, new types of modes develop; such modes appear to
have one form, i.e. the overall pattern of vortex formation remains generally similar
from one cycle to the next. This observation raises the issue of stabilization of an
otherwise non-repeatable, or even chaotic, system of vortices due to the proximity of
a free surface. This topic deserves theoretical consideration.
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